Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Mol Biol Rep ; 51(1): 490, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578476

RESUMO

BACKGROUND: One of the most challenging aspects of nucleic acid amplification tests is the extraction of genomic DNA. However, achieving satisfactory quality and quantity of genomic DNA is not always easy, while the demand for rapid, low-cost and less laborious DNA isolation methods is ever-increasing. METHODS AND RESULTS: We have developed a rapid (⁓2 min) crude DNA extraction method leading to direct-PCR that requires minimum reagents and laboratory equipment. It was developed by eliminating the time-consuming purification steps of DNA extraction, by processing the sample in optimized amounts of Taq KCl PCR buffer and DNARelease Additive/Proteinase K in only two minutes and carrying out amplification using conventional Taq DNA polymerase. The DNA preparation method was validated on muscle tissue samples from 12 different species as well as 48 cooked meat samples. Its compatibility was also successfully tested with different types of PCR amplification platforms extensively used for genetic analysis, such as simplex PCR, PCR-RFLP (Restriction Fragment Length Polymorphism), multiplex PCR, isothermal amplification, real-time PCR and DNA sequencing. CONCLUSIONS: The developed protocol provides sufficient amount of crude DNA from muscle tissues of different species for PCR amplifications to identify species-of-origin via different techniques coupled with PCR. The simplicity and robustness of this protocol make nucleic acid amplification assays more accessible and affordable to researchers and authorities for both laboratory and point-of-care tests.


Assuntos
DNA , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/genética , Sequência de Bases , Reação em Cadeia da Polimerase Multiplex , Reação em Cadeia da Polimerase em Tempo Real , Músculos
2.
Chemosphere ; 354: 141672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479680

RESUMO

Cadmium (Cd) is classified as a heavy metal (HM) and is found into the environment through both natural processes and intensified anthropogenic activities such as industrial operations, mining, disposal of metal-laden waste like batteries, as well as sludge disposal, excessive fertilizer application, and Cd-related product usage. This rising Cd disposal into the environment carries substantial risks to the food chain and human well-being. Inadequate regulatory measures have led to Cd bio-accumulation in plants, which is increasing in an alarming rate and further jeopardizing higher trophic organisms, including humans. In response, an effective Cd decontamination strategy such as phytoremediation emerges as a potent solution, with innovations in nanotechnology like biochar (BC) and nanoparticles (NPs) further augmenting its effectiveness for Cd phytoremediation. BC, derived from biomass pyrolysis, and a variety of NPs, both natural and less toxic, actively engage in Cd removal during phytoremediation, mitigating plant toxicity and associated hazards. This review scrutinizes the application of BC and NPs in Cd phytoremediation, assessing their synergistic mechanism in influencing plant growth, genetic regulations, structural transformations, and phytohormone dynamics. Additionally, the review also underscores the adoption of this sustainable and environmentally friendly strategies for future research in employing BC-NP microaggregates to ameliorate Cd phytoremediation from soil, thereby curbing ecological damage due to Cd toxicity.


Assuntos
Carvão Vegetal , Metais Pesados , Nanopartículas , Poluentes do Solo , Humanos , Cádmio/análise , Biodegradação Ambiental , Metais Pesados/análise , Plantas , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
3.
PeerJ ; 12: e16944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495762

RESUMO

Background: The chickpea pod borer Helicoverpa armigera (Hübner) is a significant insect pest of chickpea crops, causing substantial global losses. Methods: Field experiments were conducted in Central Punjab, Pakistan, to investigate the impact of biotic and abiotic factors on pod borer population dynamics and infestation in nine kabuli chickpea genotypes during two cropping seasons (2020-2021 and 2021-2022). The crops were sown in November in both years, with row-to-row and plant-to-plant distances of 30 and 15 cm, respectively, following a randomized complete block design (RCBD). Results: Results showed a significant difference among the tested genotypes in trichome density, pod wall thickness, and leaf chlorophyll contents. Significantly lower larval population (0.85 and 1.10 larvae per plant) and percent damage (10.65% and 14.25%) were observed in genotype Noor-2019 during 2020-2021 and 2021-2022, respectively. Pod trichome density, pod wall thickness, and chlorophyll content of leaves also showed significant variation among the tested genotypes. Pod trichome density and pod wall thickness correlated negatively with larval infestation, while chlorophyll content in leaves showed a positive correlation. Additionally, the larval population positively correlated with minimum and maximum temperatures, while relative humidity negatively correlated with the larval population. Study results explore natural enemies as potential biological control agents and reduce reliance on chemical pesticides.


Assuntos
Cicer , Mariposas , Animais , Clorofila , Cicer/genética , Produtos Agrícolas/genética , Genótipo , 60627 , Larva/genética , Mariposas/genética
4.
Funct Plant Biol ; 512024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38310885

RESUMO

Melatonin is a naturally occurring biologically active amine produced by plants, animals and microbes. This review explores the biosynthesis of melatonin in plants, with a particular focus on its diverse roles in Arabidopsis thaliana , a model species. Melatonin affects abiotic and biotic stress resistance in A. thaliana . Exogenous and endogenous melatonin is addressed in association with various conditions, including cold stress, high light stress, intense heat and infection with Botrytis cinerea or Pseudomonas , as well as in seed germination and lateral root formation. Furthermore, melatonin confers stress resistance in Arabidopsis by initiating the antioxidant system, remedying photosynthesis suppression, regulating transcription factors involved with stress resistance (CBF, DREB, ZAT, CAMTA, WRKY33, MYC2, TGA) and other stress-related hormones (abscisic acid, auxin, ethylene, jasmonic acid and salicylic acid). This article additionally addresses other precursors, metabolic components, expression of genes (COR , CBF , SNAT , ASMT , PIN , PR1 , PDF1.2 and HSFA ) and proteins (JAZ, NPR1) associated with melatonin and reducing both biological and environmental stressors. Furthermore, the future perspective of melatonin rich agri-crops is explored to enhance plant tolerance to abiotic and biotic stresses, maximise crop productivity and enhance nutritional worth, which may help improve food security.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Melatonina , Arabidopsis/genética , Melatonina/metabolismo , Plantas/genética , Proteínas de Arabidopsis/genética , Resposta ao Choque Frio
5.
BMC Plant Biol ; 24(1): 138, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408911

RESUMO

Micronutrient application has a crucial role in mitigating salinity stress in crop plants. This study was carried out to investigate the effect of zinc (Zn) and boron (B) as foliar applications on fenugreek growth and physiology under salt stress (0 and 120 mM). After 35 days of salt treatments, three levels of zinc (0, 50, and 100 ppm) and two levels of boron (0 and 2 ppm) were applied as a foliar application. Salinity significantly reduced root length (72.7%) and shoot length (33.9%), plant height (36%), leaf area (37%), root fresh weight (48%) and shoot fresh weight (75%), root dry weight (80%) and shoot dry weight (67%), photosynthetic pigments (78%), number of branches (50%), and seeds per pod (56%). Fenugreek's growth and physiology were improved by foliar spray of zinc and boron, which increased the length of the shoot (6%) and root length (2%), fresh root weight (18%), and dry root weight (8%), and chlorophyll a (1%), chlorophyll b (25%), total soluble protein content (3%), shoot calcium (9%) and potassium (5%) contents by significantly decreasing sodium ion (11%) content. Moreover, 100 ppm of Zn and 2 ppm of B enhanced the growth and physiology of fenugreek by reducing the effect of salt stress. Overall, boron and zinc foliar spray is suggested for improvement in fenugreek growth under salinity stress.


Assuntos
Trigonella , Zinco , Boro/metabolismo , Boro/farmacologia , Clorofila A/metabolismo , Estresse Salino , Tensoativos/metabolismo , Tensoativos/farmacologia , Trigonella/metabolismo , Zinco/metabolismo , Zinco/farmacologia
6.
J Gene Med ; 26(1): e3591, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37721116

RESUMO

BACKGROUND: Intellectual disability (ID) can be associated with different syndromes such as Rubinstein-Taybi syndrome (RSTS) and can also be related to conditions such as metabolic encephalomyopathic crises, recurrent,with rhabdomyolysis, cardiac arrhythmias and neurodegeneration. Rare congenital RSTS1 (OMIM 180849) is characterized by mental and growth retardation, significant and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms, and an elevated risk of malignancies. Microdeletions and point mutations in the CREB-binding protein (CREBBP) gene, located at 16p13.3, have been reported to cause RSTS. By contrast, TANGO2-related metabolic encephalopathy and arrhythmia (TRMEA) is a rare metabolic condition that causes repeated metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias and encephalopathy with cognitive decline. Clinicians need more clinical and genetic evidence to detect and comprehend the phenotypic spectrum of this disorder. METHODS: Exome sequencing was used to identify the disease-causing variants in two affected families A and B from District Kohat and District Karak, Khyber Pakhtunkhwa. Affected individuals from both families presented symptoms of ID, developmental delay and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS: In the present study, two families (A and B) exhibiting various forms of IDs were enrolled. In Family A, exome sequencing revealed a novel missense variant (NM 004380.3: c.4571A>G; NP_004371.2: p.Lys1524Arg) in the CREBBP gene, whereas, in Family B, a splice site variant (NM 152906.7: c.605 + 1G>A) in the TANGO2 gene was identified. Sanger sequencing of both variants confirmed their segregation with ID in both families. The in silico tools verified the aberrant changes in the CREBBP protein structure. Wild-type and mutant CREBBP protein structures were superimposed and conformational changes were observed likely altering the protein function. CONCLUSIONS: RSTS and TRMEA are exceedingly rare disorders for which specific clinical characteristics have been clearly established, but more investigations are underway and required. Multicenter studies are needed to increase our understanding of the clinical phenotypes, mainly showing the genotype-phenotype associations.


Assuntos
Deficiência Intelectual , Rabdomiólise , Síndrome de Rubinstein-Taybi , Humanos , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/química , Deficiência Intelectual/genética , Mutação , Mutação de Sentido Incorreto , Fenótipo , Rabdomiólise/genética , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/patologia
7.
Chemosphere ; 346: 140590, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914045

RESUMO

Cadmium (Cd) contamination is an eminent dilemma that jeopardizes global food safety and security, especially through its phytotoxicity in rice; one of the most edible crops. Melatonin (MET) has emerged as a protective phytohormone in stress conditions, but the defensive role and underlying mechanisms of MET against Cd toxicity in rice still remain unclear. To fulfill this knowledge gap, the present study is to uncover the key mechanisms for MET-mediated Cd-stress tolerance in rice. Cd toxicity significantly reduced growth by hindering the process of photosynthesis, cellular redox homeostasis, phytohormonal imbalance, and ultrastructural damages. Contrarily, MET supplementation considerably improved growth attributes, photosynthetic efficiency, and cellular ultrastructure as measured by gas exchange elements, chlorophyll content, reduced Cd accumulation, and ultrastructural analysis via transmission electron microscopy (TEM). MET treatment significantly reduced Cd accumulation (39.25%/31.58%), MDA (25.87%/19.45%), H2O2 (17.93%/9.56%), and O2 (29.11%/27.14%) levels in shoot/root tissues, respectively, when compared with Cd treatment. More importantly, MET manifested association with stress responsive phytohormones (ABA and IAA) and boosted the defense mechanisms of plant by enhancing the activities of ROS-scavenging antioxidant enzymes (SOD; superoxide dismutase, POD; peroxidase, CAT; catalase, APX; ascorbate peroxidase) and as well as regulating the key stress-responsive genes (OsSOD1, OsPOD1, OsCAT2, OsAPX1), thereby reinstate cellular membrane integrity and confer tolerance to ultrastructural damages under Cd-induced phytotoxicity. Overall, our findings emphasized the potential of MET as a long-term and cost-effective approach to Cd remediation in paddy soils, which can pave the way for a healthier and more environmentally conscious agricultural sector.


Assuntos
Melatonina , Oryza , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cádmio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Melatonina/metabolismo , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo
8.
Environ Res ; 244: 117949, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109961

RESUMO

Petrochemical-based synthetic plastics poses a threat to humans, wildlife, marine life and the environment. Given the magnitude of eventual depletion of petrochemical sources and global environmental pollution caused by the manufacturing of synthetic plastics such as polyethylene (PET) and polypropylene (PP), it is essential to develop and adopt biopolymers as an environment friendly and cost-effective alternative to synthetic plastics. Research into bioplastics has been gaining traction as a way to create a more sustainable and eco-friendlier environment with a reduced environmental impact. Biodegradable bioplastics can have the same characteristics as traditional plastics while also offering additional benefits due to their low carbon footprint. Therefore, using organic waste from biological origin for bioplastic production not only reduces our reliance on edible feedstock but can also effectively assist with solid waste management. This review aims at providing an in-depth overview on recent developments in bioplastic-producing microorganisms, production procedures from various organic wastes using either pure or mixed microbial cultures (MMCs), microalgae, and chemical extraction methods. Low production yield and production costs are still the major bottlenecks to their deployment at industrial and commercial scale. However, their production and commercialization pose a significant challenge despite such potential. The major constraints are their production in small quantity, poor mechanical strength, lack of facilities and costly feed for industrial-scale production. This review further explores several methods for producing bioplastics with the aim of encouraging researchers and investors to explore ways to utilize these renewable resources in order to commercialize degradable bioplastics. Challenges, future prospects and Life cycle assessment of bioplastics are also highlighted. Utilizing a variety of bioplastics obtained from renewable and cost-effective sources (e.g., organic waste, agro-industrial waste, or microalgae) and determining the pertinent end-of-life option (e.g., composting or anaerobic digestion) may lead towards the right direction that assures the sustainable production of bioplastics.


Assuntos
Compostagem , Plásticos , Humanos , Biopolímeros/química , Tecnologia , Resíduos Industriais
9.
Sci Total Environ ; 912: 169288, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38110103

RESUMO

Cadmium contamination poses severe environmental and health threats, necessitating effective mitigation strategies. Rice husk biochar (BC) and nanoparticle (NP) treatments are emerging strategies with limited research on their synergistic benefits. This study assesses BC, silicon NPs (nSi), and iron NPs (nFe) modifications (B-nSi, B-nFe, and B-nSi-nFe) to reduce Cd-bioavailability in soil and its toxicity in maize, not reported before. Characterization of amendments validated, nSi and nFe attachment to BC, forming new mineral crystals to adsorb Cd. We found that B-nSi-nFe induced Cd-immobilization in soil by the formation of Cd-ligand complexes with the effective retention of NPs within microporous structure of BC. B-nSi-nFe increased soil pH by 0.76 units while reducing bioavailable Cd by 49 %, than Ck-Cd. Resultantly, B-nSi-nFe reduced Cd concentrations in roots and shoots by 51 % and 75 %, respectively. Moreover, the application of B-nSi-nFe significantly enhanced plant biomass, antioxidant activities, and upregulated the expression of antioxidant genes [ZmAPX (3.28 FC), ZmCAT (3.20 FC), ZmPOD (2.58 FC), ZmSOD (3.08 FC), ZmGSH (3.17 FC), and ZmMDHAR (3.80 FC)] while downregulating Cd transporter genes [ZmNramp5 (3.65 FC), ZmHMA2 (2.92 FC), and ZmHMA3 (3.40 FC)] compared to Ck-Cd. Additionally, confocal microscopy confirmed the efficacy of B-nSi-nFe in maintaining cell integrity due to reduced oxidative stress. SEM and TEM observations revealed alleviation of Cd toxicity to stomata, guard cells, and ultracellular structures with B-nSi-nFe treatment. Overall, this study demonstrated the potential of B-nSi-nFe for reducing Cd mobility in soil-plant system, mitigating Cd-toxicity in plants and improving enzymatic activities in soil.


Assuntos
Nanopartículas , Oryza , Poluentes do Solo , Ferro/metabolismo , Cádmio/análise , Zea mays/metabolismo , Silício , Antioxidantes/metabolismo , Carvão Vegetal/química , Solo/química , Nanopartículas/toxicidade , Nanopartículas/química , Oryza/química , Poluentes do Solo/análise
10.
Plants (Basel) ; 12(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068618

RESUMO

Plants, being sessile, have developed complex signaling and response mechanisms to cope with biotic and abiotic stressors. Recent investigations have revealed the significant contribution of phytohormones in enabling plants to endure unfavorable conditions. Among these phytohormones, jasmonic acid (JA) and its derivatives, collectively referred to as jasmonates (JAs), are of particular importance and are involved in diverse signal transduction pathways to regulate various physiological and molecular processes in plants, thus protecting plants from the lethal impacts of abiotic and biotic stressors. Jasmonic acid has emerged as a central player in plant defense against biotic stress and in alleviating multiple abiotic stressors in plants, such as drought, salinity, vernalization, and heavy metal exposure. Furthermore, as a growth regulator, JA operates in conjunction with other phytohormones through a complex signaling cascade to balance plant growth and development against stresses. Although studies have reported the intricate nature of JA as a biomolecular entity for the mitigation of abiotic stressors, their underlying mechanism and biosynthetic pathways remain poorly understood. Therefore, this review offers an overview of recent progress made in understanding the biosynthesis of JA, elucidates the complexities of its signal transduction pathways, and emphasizes its pivotal role in mitigating abiotic and biotic stressors. Moreover, we also discuss current issues and future research directions for JAs in plant stress responses.

11.
BMC Public Health ; 23(1): 2480, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082395

RESUMO

BACKGROUND: Ongoing high neonatal mortality rates (NMRs) represent a global challenge. In 2021, of the 5 million deaths reported worldwide for children under five years of age, 47% were newborns. Pakistan has one of the five highest national NMRs in the world, with an estimated 39 neonatal deaths per 1,000 live births. Reducing newborn deaths requires sustainable, evidence-based, and cost-effective interventions that can be integrated within existing community healthcare infrastructure across regions with high NMR. METHODS: This pragmatic, community-based, parallel-arm, open-label, cluster randomized controlled trial aims to estimate the effect of Lady Health Workers (LHWs) providing an integrated newborn care kit (iNCK) with educational instructions to pregnant women in their third trimester, compared to the local standard of care in Gilgit-Baltistan, Pakistan, on neonatal mortality and other newborn and maternal health outcomes. The iNCK contains a clean birth kit, 4% chlorhexidine topical gel, sunflower oil emollient, a ThermoSpot™ temperature monitoring sticker, a fleece blanket, a click-to-heat reusable warmer, three 200 µg misoprostol tablets, and a pictorial instruction guide and diary. LHWs are also provided with a handheld scale to weigh the newborn. The primary study outcome is neonatal mortality, defined as a newborn death in the first 28 days of life. DISCUSSION: This study will generate policy-relevant knowledge on the effectiveness of integrating evidence-based maternal and newborn interventions and delivering them directly to pregnant women via existing community health infrastructure, for reducing neonatal mortality and morbidity, in a remote, mountainous area with a high NMR. TRIAL REGISTRATION: NCT04798833, March 15, 2021.


Assuntos
Mortalidade Infantil , Morte Perinatal , Criança , Recém-Nascido , Gravidez , Humanos , Feminino , Pré-Escolar , Paquistão , Serviços de Saúde Comunitária , Terceiro Trimestre da Gravidez , Avaliação de Resultados em Cuidados de Saúde , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Biochem Genet ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985543

RESUMO

Intellectual disability, a genetically and clinically varied disorder and is a significant health problem, particularly in less developed countries due to larger family size and high ratio of consanguineous marriages. In the current genetic study, we investigate and find the novel disease causative factors in the four Pakistani families with severe type of non-syndromic intellectual disability. For genetic analysis whole-exome sequencing (WES) and Sanger sequencing was performed. I-TASSER and Cluspro tools were used for Protein modeling and Protein-protein docking. Sanger sequencing confirms the segregation of novel homozygous variants in all the families i.e., c.245 T > C; p.Leu82Pro in SLC50A1 gene in family 1, missense variant c.1037G > A; p.Arg346His in TARS2 gene in family 2, in family 3 and 4, nonsense mutation c.234G > A; p.Trp78Term and missense mutation c.2200G > A; p.Asp734Asn in TBC1D3 and ANAPC2 gene, respectively. In silico functional studies have found the drastic effect of these mutations on protein structure and its interaction properties. Substituted amino acids were highly conserved and present on highly conserved region throughout the species. The discovery of pathogenic variants in SLC50A1, TARS2, TBC1D1 and ANAPC2 shows that the specific pathways connected with these genes may be important in cognitive impairment. The decisive role of pathogenic variants in these genes cannot be determined with certainty due to lack of functional data. However, exome sequencing and segregation analysis of all filtered variants revealed that the currently reported variants were the only variations from the respective families that segregated with the phenotype in the family.

13.
J Genet Eng Biotechnol ; 21(1): 151, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017118

RESUMO

BACKGROUND: Cellulase is an important bioprocessing enzyme used in various industries. This study was conducted with the aim of improving the biodegradation activity of cellulase obtained from the Bacillus subtilis AG-PQ strain. For this purpose, AgO and FeO NPs were fabricated using AgNO3 and FeSO4·7H2O salt respectively through a hydro-thermal method based on five major steps; selection of research-grade materials, optimization of temperature, pH, centrifuge, sample washed with distilled water, dry completely in the oven at the optimized temperature and finally ground for characterization. The synthesized NPs were characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to confirm the morphology, elemental composition, and structure of the sample respectively. The diameter of the NPs was recorded through SEM which lay in the range of 70-95 nm. RESULTS: Cultural parameters were optimized to achieve better cellulase production, where incubation time of 56 h, inoculum size of 5%, 1% coconut cake, 0.43% ammonium nitrate, pH 8, and 37 °C temperature were found optimal. The enhancing effect of AgO NPs was observed on cellulase activity (57.804 U/ml/min) at 50 ppm concentration while FeO NPs exhibited an inhibitory effect on cellulase activity at all concentrations. Molecular docking analysis was also performed to understand the underlying mechanism of improved enzymatic activity by nanocatalysts. CONCLUSION: This study authenticates AgO NPs as better nanocatalysts for improved thermostable cellulase biodegradation activity with the extraordinary capability to be potentially utilized in bioethanol production.

14.
Sci Rep ; 13(1): 17519, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845339

RESUMO

Arid soils are often weak, low in fertility, and lack essential plant nutrients. Organic amendments might be a feasible solution to counter the detrimental impact and rehabilitate weak arid soil for the growth of legumes. The study aimed to investigate how organic amendments of compost and humic acid may affect winter field pea productivity in arid soil. Over 2 years of field experiments, a range of treatments were applied, including different amounts of compost and humic acid. The results showed higher microbial carbon (C), and nitrogen (N) biomass, root length, shoot length, grains pod-1, and grain yield of pea, gained from the collective application of 8 Mg ha-1 compost and 15 kg ha-1 humic acid compared to all other treatments. Organic amendments increased soil microbial C density by 67.0 to 83.0% and N biomass by 46.0 to 88.0% compared with the control. The combined application of compost and humic acid increased soil microbial N biomass by 57.0 to 60.0% compared to the sole applications of compost-only and humic acid-only. It was concluded that organic amendments of 8 Mg ha-1 compost and 15 kg ha-1 humic acid in arid soil modulated microbial density, resulting in improved winter field pea productivity. This study suggests organic amendments of compost and humic acid might be a practicable solution to rehabilitate weak arid soil to grow legumes.

15.
Chemosphere ; 339: 139637, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499806

RESUMO

The presence of dyes in contaminated water poses substantial dangers to the health of both humans and aquatic life. A process called precipitation polymerization was used to create unique cross-linked hexa-chlorocyclotriphosphazene-co-phenolphthalein (Hex-CCP-co-PPT) microspheres for the purpose of this research. Advanced methods such as X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential thermogravimetry (DTG) were used to characterise these microspheres. In a simulated solution, the performance of Hex-CCP-co-PPTs as a sorbent for removing MB dye was investigated, and the results showed an unprecedentedly high removal rate of 88.4% for MB. Temperature of 25 °C, a Hex-CCP-co-PPTs dose of 40 mg, an MB concentration of 20 ppm, an MB solution volume of 20 mL, a contact time of 40 min, and a pH of 9 were found to be the optimal experimental conditions. According to the results of the kinetic and adsorption analyses, the PSO and Langmuir adsorption models are the best ones to use. These models favour the chemi-sorption nature and mono-layered adsorption of MB in comparison to Hex-CCP-co-PPTs. Importantly, the thermodynamic analysis demonstrated that the process of removing MB by utilizing Hex-CCP-co-PPTs was endothermic and occurred spontaneously. These findings highlight the potential application of Hex-CCP-co-PPT microspheres in Algal Membrane Bioreactors (AMBRs) for the efficient and sustainable removal of dye from wastewater. This would contribute to the protection of ecosystems as well as the public's health.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Corantes/química , Microesferas , Ecossistema , Azul de Metileno/química , Poluentes Químicos da Água/química , Termodinâmica , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Redox Biol ; 64: 102805, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406579

RESUMO

Plants being sessile in nature, are exposed to unwarranted threats as a result of constantly changing environmental conditions. These adverse factors can have negative impacts on their growth, development, and yield. Hormones are key signaling molecules enabling cells to respond rapidly to different external and internal stimuli. In plants, melatonin (MT) plays a critical role in the integration of various environmental signals and activation of stress-response networks to develop defense mechanisms and plant resilience. Additionally, melatonin can tackle the stress-induced alteration of cellular redox equilibrium by regulating the expression of redox hemostasis-related genes and proteins. The purpose of this article is to compile and summarize the scientific research pertaining to MT's effects on plants' resilience to biotic and abiotic stresses. Here, we have summarized that MT exerts a synergistic effect with other phytohormones, for instance, ethylene, jasmonic acid, and salicylic acid, and activates plant defense-related genes against phytopathogens. Furthermore, MT interacts with secondary messengers like Ca2+, nitric oxide, and reactive oxygen species to regulate the redox network. This interaction triggers different transcription factors to alleviate stress-related responses in plants. Hence, the critical synergic role of MT with diverse plant hormones and secondary messengers demonstrates phytomelatonin's importance in influencing multiple mechanisms to contribute to plant resilience against harsh environmental factors.


Assuntos
Melatonina , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Plantas/genética , Estresse Fisiológico/genética , Oxirredução
17.
Phys Chem Chem Phys ; 25(30): 20430-20450, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466347

RESUMO

Density functional theory (DFT) calculations were performed for a series of supramolecular assemblies containing azobenzene (Azo-X where X = I, Br and H) and alkoxystilbazole subunits to evaluate their electronic, linear and nonlinear optical properties. These assemblies are derivatives of azobenzene, obtained by the substitution of electron-withdrawing and electron-donating groups onto the molecular skeleton. The interaction energies (Eint) of all the designed supramolecular complexes (IA-IF, IIA-IIF and IIIA-IIIF) range from -1.0 kcal mol-1 to -7.7 kcal mol-1. The electronic properties of these hydrogen/halogen bond driven supramolecular assemblies such as vertical ionization energies (VIE), HOMO-LUMO energy gap (GH-L), excitation energies, density of states (DOS) and natural population (NPA) analyses were also computed. The non-covalent interaction index (NCI) and quantum theory of atoms in molecules (QTAIM) analyses were also performed to validate the nature of inter- and intra-molecular interactions in these complexes. A substantial enhancement in the first hyperpolarizability (ß0) values of the designed supramolecular complexes was observed, which is driven by the charge transfer from the pyridyl moiety of alkoxystilbazole to Azo-X. The highest ß0 value of 1.3 × 104 au was observed for the supramolecular complex of p-nitro substituted azobenzene with alkoxystilbazole (ID complex). Moreover, the results show that the substitution of electron-withdrawing groups on Azo-X can also bring larger ß0 values for such complexes. It was confirmed on a purely theoretical basis that both the types of noncovalent interactions present and the substituent group incorporated influence the nonlinear optical (NLO) response of the systems. Furthermore, the ß0 values of the E (trans) and Z (cis) forms were compared to demonstrate the two-way photoinduced switching mechanism.

18.
Cureus ; 15(4): e37933, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37267051

RESUMO

INTRODUCTION: 90% of visually impaired people live in developing countries. There are various types of vision impairment, but the focus of the current study is retinitis pigmentosa (RP). Up to now, 150 mutations have been reported that are linked with RP. METHODOLOGY: Healthy and affected members from two Pakistani families (RP01 and RP02) segregating autosomal recessive RP were selected for DNA extraction. PCR was conducted, and the amplified PCR products were analyzed using Polyacrylamide Gel Electrophoresis (PAGE) and visualized in the Gel Doc system for linkage analysis. The Gene Hunter 2.1r5 tool in the Simple Linkage v5.052 beta software suite was used to conduct multipoint parametric linkage analysis on the two consanguineous families examined on the 6K Illumina array. Exons and intron-exon borders of all known arRP genes found in homozygous areas were sequenced in the matching probands using a 3130 automated sequencer and the Big Dye Terminator Cycle Sequencing Kit v3.1. The mutation study was carried out using the AlaMut 1.5 program. RESULTS: In both families, linkage analysis was performed using microsatellite marker DIS422 for gene crumbs homolog 1 (CRB1) and microsatellite marker D8S2332 for gene Retinitis Pigmentosa 1 (RP1). Multipoint linkage analysis identifies genomic regions that could potentially contain the genetic defect. In family RP01, only a single peak with a maximal multipoint LOD score of 3.00 was identified on chromosome 1, whereas in family RP02, multiple peaks with multipoint LOD scores of 1.80 were identified on chromosome 8. Analysis of the CRB1 gene revealed a homozygous substitution of glycine for valine (c.1152T>G; p.V243G), whereas the RP1 gene demonstrated that leucine was substituted for proline as a result of cytosine to thymine transfer (c.3419C>T; p. P1035L).  Conclusion: Homozygosity mapping is a powerful method for finding genetic abnormalities that are both precise and comprehensive for identifying harmful variations in consanguineous families. This method is invaluable for providing accurate clinical diagnostic and genetic advice in remote regions of Pakistan while also increasing knowledge about autosomal recessive diseases and the dangers of mixing.

19.
Bioresour Technol ; 384: 129368, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343794

RESUMO

The bioconversion of syngas using (homo)acetogens as biocatalysts shows promise as a viable option due to its higher selectivity and milder reaction conditions compared to thermochemical conversion. The current bioconversion process operates primarily to produce C2 chemicals (e.g., acetate and ethanol) with sufficient technology readiness levels (TRLs) in process engineering (as midstream) and product purification (as downstream). However, the economic feasibility of this process could be improved with greater biocatalytic options in the upstream phase. This review focuses on the Wood-Ljungdahl pathway (WLP) which is a biological syngas-utilization pathway, redox balance and ATP generation, suggesting that the use of a specific biocatalysts including Eubacterium limosum could be advantageous in syngas valorization. A pertinent strategy to mainly produce chemicals with a high degree of reduction is also provided with examples of flux control, mixed cultivation and mixotrophy. Finally, this article presents future direction of industrial utilization of syngas fermentation.


Assuntos
Acetatos , Fermentação
20.
Folia Microbiol (Praha) ; 68(6): 867-888, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37160524

RESUMO

Fungi are producers of lignolytic extracellular enzymes which are used in industries like textile, detergents, biorefineries, and paper pulping. This study assessed for the production, purification, and characterization of novel p-diphenol oxidase (PDO; laccase) enzyme from lignolytic white-rot fungal isolate. Fungi samples collected from different areas of Pakistan were initially screened using guaiacol plate method. The maximum PDO producing fungal isolate was identified on the basis of ITS (internal transcribed spacer sequence of DNA of ribosomal RNA) sequencing. To get optimum enzyme yield, various growth and fermentation conditions were optimized. Later PDO was purified using ammonium sulfate precipitation, size exclusion, and anion exchange chromatography and characterized. It was observed that the maximum PDO producing fungal isolate was Schizophyllum commune (MF-O5). Characterization results showed that the purified PDO was a monomeric protein with a molecular mass of 68 kDa and showed stability at lower temperature (30 °C) for 1 h. The Km and Vmax values of the purified PDO recorded were 2.48 mM and 6.20 U/min. Thermal stability results showed that at 30 °C PDO had 119.17 kJ/K/mol Ea value and 33.64 min half-life. The PDO activity was stimulated by Cu2+ ion at 1.0 mM showing enhanced activity up to 111.04%. Strong inhibition effect was noted for Fe2+ ions at 1 mM showing 12.04% activity. The enzyme showed stability against 10 mM concentration oxidizing reducing agents like DMSO, EDTA, H2O2, NaOCl, and urea and retained more than 75% of relative activity. The characterization of purified PDO enzyme confirmed its tolerance against salt, metal ions, organic solvents, and surfactants indicating its ability to be used in the versatile commercial applications.


Assuntos
Lacase , Schizophyllum , Lacase/metabolismo , Schizophyllum/genética , Schizophyllum/metabolismo , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Temperatura , Estabilidade Enzimática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...